Crystal Structures of Three MB_5O_8 (M = Cs, Rb) Borates (α -CsB₅O₈, γ -CsB₅O₈, and β -RbB₅O₈)

N. Penin,*¹ L. Seguin,* M. Touboul,* and G. Nowogrocki†

*Laboratoire de Réactivité et de Chimie des Solides, Université de Picardie Jules Verne, UMR 6007, 33, rue Saint-Leu, 80039 Amiens Cedex, France; and †Laboratoire de Cristallochimie et de Physicochimie du Solide, ENSC Lille, UPRES A 8012, B.P. 108, 59652 Villeneuve d'Ascq Cedex, France

59052 Villeneuve a Ascq Cedex, France

Received April 24, 2001; in revised form July 3, 2001; accepted July 12, 2001

Crystal structures of α -CsB₅O₈, γ -CsB₅O₈, and β -RbB₅O₈ have been determined from single-crystal X-ray diffraction data. α -CsB₅O₈ crystallizes in the monoclinic space group P2₁/n with the following parameters: a = 7.117(2) Å, b = 9.634(3) Å, c = 10.391(4) Å, $\beta = 101.160(4)^{\circ}$; Z = 4; the structure was refined from 1392 reflections until $R_1 = 0.0489$. γ -CsB₅O₈ and β -RbB₅O₈ have been found to be isostructural with α -KB₅O₈ and β -KB₅O₈ (and TlB₅O₈), respectively. They crystallize with eight formula units in the *Pbca* space group. Unit cell parameters are a = 8.697(3) Å, b = 8.431(2) Å, c = 21.410(6) Å for γ -CsB₅O₈ and a = 7.553(2) Å, b = 11.857(3) Å, c = 14.813(4) Å for β -RbB₅O₈; their structures were refined from 1085 reflections until $R_1 = 0.0712$, and from 1271 reflections until $R_1 = 0.0290$, respectively. The structures of these compounds can be described on the basis of a new two- $(\alpha$ -CsB₅O₈) and three-dimensional (γ - $C_{s}B_{5}O_{s}$, β -RbB₅O₈) network of pentaborate units $[B_{5}O_{8}]^{-}$; these units are formed by two B₃O₃ cycles linked by a boron atom, which contain two groups of two BO₃ triangles (Δ) on each side of a BO₄ tetrahedron (T); their shorthand notations are 5: $\infty^2 (4\Delta + T)$ for α -CsB₅O₈ and 5: $\infty^3 (4\Delta + T)$ for γ -CsB₅O₈ and β -RbB₅O₈. Distortions of the [B₅O₈]⁻ units found in these compounds are presented. © 2001 Academic Press

INTRODUCTION

Since the 1960s, the crystal structures of some MB_5O_8 compounds (M = K, Cs, Rb, Tl) have been studied. The known crystallographic data of these pentaborates are summarized in Table 1. In 1959, Krogh-Moe reported for the first time the existence of three KB₅O₈ polymorphs (1, 2) and later on resolved the structure of two of them, β -KB₅O₈ (3) and α -KB₅O₈ (4); the latter was simply characterized by its unit cell parameters (5) but since has been identified as the complex K₅B₁₉O₃₁ borate (6). In 1966, Kocher showed the existence of three forms of RbB₅O₈ (7, 8), underlining the similarity between the potassium and rubidium pentaborates. Indeed, she reported that β -RbB₅O₈ was isostructural to β -KB₅O₈ (3). That was recently confirmed by Krzhizhanovskaya *et al.* (9) who solved the structure of β -RbB₅O₈ from X-ray powder diffraction data, using the crystallographic data of β -KB₅O₈. Recently, Touboul and Nowogrocki (10) solved the structure of TlB₅O₈ from single-crystal X-ray diffraction data, and showed that this compound was also isostructural to β -KB₅O₈ (3). In 1999, Bubnova *et al.* (11), describing the *M*B₅O₈ crystalline modifications (M = K, Rb), confirmed the similarity between these borates. These authors found that α -RbB₅O₈ was isostructural to α -KB₅O₈ (4) (see Table 1).

Concerning the $Cs_2O-B_2O_3$ binary system, Krogh-Moe (12, 13) reported the space group, the unit cell parameters, and the atomic coordinates of cesium atoms in CsB_5O_8 . Later, Kocher (7, 8) showed the existence of three modifications of CsB_5O_8 , and identified the form described by Krogh-Moe as being the high-temperature form (α) (see Table 1).

All the MB_5O_8 compounds (M = K, Rb, Tl) (3, 4, 9, 10) whose structures are known contain a three-dimensional network of $[B_5O_8]^-$ pentaborate groups which are formed by one tetrahedrally coordinated boron atom and four triangularly coordinated boron atoms.

In this paper, we will describe for the first time the structure of two of the three forms of CsB_5O_8 (α and γ) that involves, for the α form, the description of a new two-dimensional network of pentaborate groups $[B_5O_8]^-$. For the β -CsB₅O₈ form, a structural study carried out on X-ray powder diffraction showed that β -CsB₅O₈ (3), TlB₅O₈ (10), and β -RbB₅O₈ (9). Attempts to prepare single crystals of β -CsB₅O₈ remained unfruitful. Finally, we confirmed, by a single-crystal X-ray diffraction study, the results published for the β -RbB₅O₈ structure coming from X-ray powder diffraction data (9).

¹To whom correspondence should be addressed. Fax: 33 3 22 82 75 90. E-mail: nicolas.penin@sc.u-picardie.fr.

PENIN ET AL.

TABLE 1 Crystallographic Data of MB_5O_8 (M = K, Rb, Cs, Tl)

	α -KB ₅ O ₈	β -KB ₅ O ₈	α -RbB ₅ O ₈	β -RbB ₅ O ₈	TlB_5O_8	α -CsB ₅ O ₈
Formula weight (g/mol)	221	.419	267.	517	386.417	314.952
Space group	Pbca	Pbca	Pbca	Pbca	Pbca	$P2_1/a$
a (Å)	8.383	7.418	8.563	7.550	7.557	11.32
b (Å)	8.418	11.702	8.515	11.842	11.925	9.54
c (Å)	21.540	14.745	21.432	14.805	14.734	7.12
$\beta(\circ)$	_	_	_	_	_	117
$V(Å^3)$	1520	1280	1563	1324	1328	685
Z	8	8	8	8	8	2
$Dx (g/cm^3)$	1.93	2.29	2.29	2.68	3.865	_
Method	Single crystal	Single crystal	Powder	Powder	Single crystal	Single crystal
Structure resolved	Yes	Yes	No	Yes	Yes	No
References	(4)	(3)	(11)	(9)	(10)	(13)

EXPERIMENTAL

Synthesis

As for the study of other alkaline or pseudo-alkaline borates, for example β -Tl₂B₄O₇ (14), the anhydrous pen-

taborates were prepared by dehydration of their hydrated precursors which are easy to synthesize. The hydrated cesium and rubidium pentaborates $M[B_5O_6(OH)_4] \cdot 2H_2O$ (M = Cs, Rb) were obtained from an aqueous solution of dissolved M_2CO_3 (M = Cs, Rb) and H_3BO_3 in

TABLE 2Crystal Data and Intensity Collection Conditions for γ -CsB₅O₈, α -CsB₅O₈, and β -RbB₅O₈

	γ -CsB ₅ O ₈	α -CsB ₅ O ₈	β -RbB ₅ O ₈
Formula weight (g/mol)	314.96		267.52
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pbca	$P2_1/n$	Pbca
Unit cell parameters (Å, °)	a = 8.697(3)	a = 7.117(2)	a = 7.553(2)
	b = 8.431(2)	b = 9.634(3)	b = 11.857(3)
	c = 21.410(6)	c = 10.391(4)	c = 14.813(4)
		$\beta = 101.160(4)$	
V (Å ³); Z	1569.8(8); 8	698.9(4); 4	1326.5(7); 8
Density (g/cm^3)	2.665	2.993	2.679
Crystal size (mm ³)	$0.35 \times 0.30 \times 0.20$	$0.45 \times 0.35 \times 0.20$	$0.40 \times 0.25 \times 0.15$
Collection method		φ and ω scans	
Temperature		298 K	
θ range (°)	1.90-30.05	2.91-30.03	2.75-30.01
Range in h, k, l	$-12 \le h \le 12;$	$-9 \le h \le 9$	$-10 \le h \le 10$
	$-11 \le k \le 11;$	$-13 \le k \le 13$	$-16 \le k \le 16$
	$-28 \le l \le 29$	$-14 \leq l \leq 14$	$-20 \le l \le 20$
Absorption coefficient (mm ⁻¹)	$\mu(MoK\alpha) = 4.726$	$\mu(MoK\alpha) = 5.307$	$\mu(MoK\alpha) = 7.474$
Reflections collected	10,872	6339	11,200
Independent reflections	2056	1881	1864
Independent reflections $[I > 2\sigma(I)]$	1085	1392	1271
$R_{\rm int}$	0.0695	0.0437	0.0642
Refinement method	Full-matrix least squ	ares on F^2 —SHELXL-97 (17)	
Number of variables	127	127	127
Goodness-of-fit on F^2	1.002	0.912	0.871
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0712$	$R_1 = 0.0489$	$R_1 = 0.0290$
	$wR_2 = 0.1867$	$wR_2 = 0.1276$	$wR_2 = 0.0659$
R indices (all data) ^{a}	$R_1 = 0.1384$	$R_1 = 0.0716$	$R_1 = 0.0497$
	$wR_2 = 0.2025$	$wR_2 = 0.1373$	$wR_2 = 0.0683$
Largest difference map peak and hole $(e.{\rm \AA}^{-3})$	2.253 and -0.929	2.783 and -1.496	0.750 and -0.858

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}|| / |F_{o}|. \ \mathrm{w}R_{2} = \left[\sum (\mathrm{w}(F_{o}^{2} - F_{c}^{2})^{2}) / \sum (\mathrm{w}F_{o}^{2})^{2}\right]^{1/2}.$

TABLE 3Final Atomic Coordinates and Equivalent Thermal IsotropicDisplacement U_{eq} (Å²×10³) with esd's in Parentheses of γ -CsB₅O₈, α -CsB₅O₈, and β -RbB₅O₈

Atoms	x	у	Ζ	$U_{ m eq}{}^a$
		γ -CsB ₅ O ₈		
Cs	0.8568(1)	0.0336(1)	0.6190(1)	45(1)
O(1)	0.4987(11)	-0.0259(10)	0.6380(4)	51(2)
O(2)	0.5488(8)	0.1877(9)	0.5684(3)	43(2)
O(3)	0.2868(9)	0.1287(13)	0.5989(4)	64(3)
O(4)	0.4675(11)	0.2411(10)	0.6722(3)	56(2)
O(5)	0.8418(8)	0.2503(13)	0.4991(3)	51(2)
O(6)	0.9338(14)	0.0298(10)	0.7576(4)	63(3)
O(7)	1.0869(8)	0.1810(10)	0.5295(3)	47(2)
O(8)	0.5387(12)	-0.2175(13)	0.7132(4)	71(3)
B (1)	0.4470(17)	0.1320(18)	0.6194(6)	52(4)
B(2)	0.7428(14)	0.3126(17)	0.4562(6)	46(4)
B(3)	0.9530(20)	0.1850(20)	0.7687(6)	64(5)
B(4)	0.5009(14)	0.2455(19)	0.5155(5)	41(3)
B(5)	0.9820(20)	-0.0703(19)	0.8017(6)	63(5)
		α -CsB ₅ O ₈		
Cs	0.0825(1)	0.4910(1)	0.7810(1)	23(1)
O(1)	0.5014(7)	0.7206(5)	0.5616(5)	20(1)
O(2)	0.2800(7)	0.8564(5)	0.4095(5)	21(1)
O(3)	0.2990(7)	0.6103(5)	0.3748(5)	23(1)
O(4)	0.1634(7)	0.6921(5)	0.5548(5)	21(1)
O(5)	0.8397(7)	0.7044(5)	0.5764(5)	20(1)
O(6)	0.6314(7)	0.6386(5)	0.3808(5)	24(1)
O(7)	0.0449(9)	1.0164(4)	0.2916(5)	24(1)
O(8)	-0.0512(7)	0.8455(5)	0.4212(5)	25(1)
B (1)	0.3108(12)	0.7193(8)	0.4775(8)	18(2)
B(2)	0.6540(11)	0.6897(7)	0.5084(8)	16(1)
B(3)	-0.0115(11)	0.7460(8)	0.5186(8)	20(2)
B(4)	0.1011(12)	0.9048(8)	0.3715(8)	20(2)
B(5)	0.4530(11)	0.5878(8)	0.3214(8)	18(1)
		β -RbB ₅ O ₈		
Rb	0.0622(1)	0.2105(1)	0.1213(1)	24(1)
O(1)	-0.0727(2)	0.2042(2)	-0.0720(1)	17(1)
O(2)	-0.0952(2)	0.4882(2)	0.0911(1)	18(1)
O(3)	-0.0516(2)	0.1367(2)	0.3281(1)	18(1)
O(4)	0.1379(3)	0.2954(2)	0.3053(1)	17(1)
O(5)	-0.3186(2)	0.1781(2)	0.0639(1)	18(1)
O(6)	0.1978(2)	-0.0281(2)	0.0243(1)	16(1)
O(7)	0.0103(3)	-0.0340(2)	0.1509(1)	17(1)
O(8)	0.1124(3)	0.4433(2)	0.2029(1)	17(1)
B(1)	-0.4496(4)	0.2264(2)	0.1256(2)	14(1)
B(2)	0.0831(4)	0.4011(2)	0.2871(2)	13(1)
B(3)	-0.0937(4)	0.0926(3)	-0.0815(2)	14(1)
B(4)	-0.0225(4)	0.0271(3)	0.3439(2)	16(1)
B(5)	-0.3077(4)	0.0677(3)	0.0438(2)	15(1)

 ${}^{a}U_{eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor

stoichiometric proportions; CO₂ being released, its evaporation under constant stirring and heating led to the desired compounds. The latter were characterized by X-ray powder diffraction (Siemens D5000 diffractometer; $\lambda CuK\alpha_1 = 1.54056$ Å). The X-ray powder pattern of Rb[B₅O₆(OH)₄]·2H₂O is in good agreement with the ICDD cards 75-0693 and 43-0415 (15) whereas that of $Cs[B_5O_6(OH)_4] \cdot 2H_2O$ does not correspond to the single ICDD card with an indexed powder pattern (no. 75-0704) (16). The crystal structure determination of $Cs[B_5O_6(OH)_4] \cdot 2H_2O$ as well as a full study of its dehydration process will be reported in a forthcoming paper. Single crystals of α -CsB₅O₈ and γ -CsB₅O₈ were obtained after dehydration of Cs[B₅O₆(OH)₄] $\cdot 2H_2O$, melting approximately 30°C above the melting temperature ($T = 700^{\circ}C$) (7),

TABLE 4

Anisotropi	c Th	erma	al Vi	ibration	Pa	rameters (Å	$^{2} \times 10^{3}$) (esd	's in
Parentheses)	for	All	the	Atoms	of	γ -CsB ₅ O ₈ ,	α -CsB ₅ O ₈ ,	and
β-RbB ₅ O ₈								

Atoms	U_{11}	U_{22}	U ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	U_{12}
Cs	45(1)	56(1)	35(1)	9(1)	-6(1)	3(1)
O(1)	70(6)	52(5)	30(4)	-1(4)	4(4)	12(4)
O(2)	30(4)	60(5)	38(4)	12(3)	6(3)	1(4)
O(3)	32(4)	116(8)	43(5)	37(5)	-4(4)	-11(5)
O(4)	91(7)	40(5)	37(4)	2(4)	12(4)	2(4)
O(5)	19(3)	99(7)	36(4)	23(4)	-6(3)	-2(4)
O(6)	116(8)	33(4)	40(5)	0(4)	-28(5)	6(5)
O(7)	22(3)	78(6)	41(4)	21(4)	-4(3)	-11(4)
O(8)	79(7)	91(8)	43(5)	-1(5)	2(5)	17(6)
B (1)	51(9)	49(9)	56(8)	31(7)	-16(7)	-21(7)
B(2)	16(5)	84(12)	37(6)	12(6)	3(5)	-13(6)
B(3)	83(13)	76(13)	32(7)	9(7)	8(7)	-15(10)
B(4)	23(6)	65(10)	35(6)	17(7)	15(5)	2(6)
B(5)	106(14)	54(11)	28(7)	-18(6)	-4(8)	7(9)
			α -CsB ₅ O ₈			
Cs	19(1)	24(1)	24(1)	1(1)	3(1)	0(1)
O(1)	13(2)	22(2)	24(3)	-3(2)	0(2)	1(2)
O(2)	21(3)	20(2)	26(3)	5(2)	11(2)	-2(2)
O(3)	17(2)	25(3)	24(3)	-8(2)	-2(2)	-7(2)
O(4)	19(3)	19(2)	24(3)	7(2)	7(2)	3(2)
O(5)	17(2)	23(2)	19(2)	2(2)	3(2)	-2(2)
O(6)	14(2)	35(3)	24(3)	-13(2)	5(2)	-3(2)
O(7)	42(3)	10(2)	18(2)	5(2)	4(2)	5(2)
O(8)	19(3)	26(3)	31(3)	12(2)	5(2)	2(2)
B (1)	17(4)	17(3)	21(4)	-4(3)	7(3)	-1(3)
B(2)	18(4)	10(3)	21(4)	0(3)	4(3)	1(2)
B(3)	19(4)	14(3)	24(4)	1(3)	-2(3)	-4(3)
B(4)	27(4)	18(3)	15(4)	0(3)	1(3)	-3(3)
B(5)	19(4)	14(3)	19(4)	-3(3)	1(3)	-2(3)
			β -RbB ₅ O ₈			
Rb	30(1)	21(1)	23(1)	-1(1)	-3(1)	-6(1)
O(1)	24(1)	10(1)	19(1)	-2(1)	5(1)	-2(1)
O(2)	24(1)	9(1)	20(1)	1(1)	-6(1)	-1(1)
O(3)	23(1)	11(1)	19(1)	0(1)	-6(1)	1(1)
O(4)	22(1)	11(1)	17(1)	2(1)	3(1)	4(1)
O(5)	23(1)	11(1)	19(1)	-2(1)	8(1)	-2(1)
O(6)	22(1)	11(1)	17(1)	-2(1)	5(1)	1(1)
O(7)	21(1)	11(1)	18(1)	-2(1)	5(1)	-2(1)
O(8)	22(1)	15(1)	15(1)	4(1)	2(1)	3(1)
B(1)	18(1)	10(1)	14(1)	-1(1)	1(1)	2(1)
B(2)	14(2)	11(1)	15(1)	0(1)	-1(1)	-1(1)
B(3)	16(2)	13(1)	13(1)	-1(1)	-1(1)	3(1)
B(4)	16(2)	16(2)	14(1)	-1(1)	2(1)	-2(1)
B(5)	16(2)	13(1)	14(1)	1(1)	-1(1)	0(1)

^aThe form of the anisotropic thermal parameters is: $\exp\left[-2\pi^{2}(h^{2}a^{*2}U_{11}+k^{2}b^{*2}U_{22}+l^{2}c^{*2}U_{33}+2hka^{*}b^{*}U_{12}+2hla^{*}c^{*}U_{13}+2klb^{*}c^{*}U_{23})\right]$.

TABLE 5Interatomic Distances (Å) and Angles (°) in γ -CsB₅O₈, α -CsB₅O₈, and β -RbB₅O₈

		γ-CsB ₅ O ₈	
	В	O ₄ Tetrahedron	
B(1)-O(1)	1.46(2)	- O(1) - B(1) - O(2)	108(1)
-O(2)	1.48(2)	O(1)-B(1)-O(3)	111(1)
-O(3)	1.46(2)	O(1)-B(1)-O(4)	109(1)
-O(4)	1.47(2)	O(2)-B(1)-O(3)	111(1)
Mean	1.47(2)	O(2)-B(1)-O(4)	107(1)
		O(3)-B(1)-O(4)	111(1)
		Mean	110(1)
		BO ₃ triangles	
B(2)-O(3) ⁽ⁱ⁾	1.34(1)	$O(3)^{(i)}-B(2)-O(5)$	124(1)
-O(5)	1.36(1)	$O(3)^{(i)}-B(2)-O(7)^{(ii)}$	117(1)
$-O(7)^{(ii)}$	1.39(1)	$O(5)-B(2)-O(7)^{(ii)}$	119(1)
Mean	1.36(1)	Mean	120(1)
B(3)-O(4) ⁽ⁱⁱⁱ⁾	1.36(2)	$O(4)^{(iii)} - B(3) - O(6)$	121(1)
-O(6)	1.34(2)	$O(4)^{(iii)} - B(3) - O(8)^{(iv)}$	124(1)
-O(8) ^(iv)	1.45(2)	$O(6)-B(3)-O(8)^{(iv)}$	115(1)
Mean	1.38(2)	Mean	120(1)
B(4)-O(2)	1.30(1)	O(2)-B(4)-O(5) ⁽ⁱⁱ⁾	121(1)
-O(5) ⁽ⁱⁱ⁾	1.42(1)	$O(2)-B(4)-O(7)^{(ii)}$	128(1)
$-O(7)^{(ii)}$	1.37(1)	$O(5)^{(ii)} - B(4) - O(7)^{(ii)}$	112(1)
Mean	1.36(1)	Mean	120(1)
B(5)-O(1) ⁽ⁱⁱⁱ⁾	1.35(2)	$O(1)^{(iii)} - B(5) - O(6)$	122(1)
-O(6)	1.33(2)	$O(1)^{(iii)} - B(5) - O(8)^{(iii)}$	116(1)
-O(8) ⁽ⁱⁱⁱ⁾	1.37(2)	$O(6)-B(5)-O(8)^{(iii)}$	121(1)
Mean	1.35(2)	Mean	120(1)
	Environment	of Cesium Atoms (< 4 Å)	
Cs-O(7)	3.036(7)	Cs-O(2)	3.168(7)
-O(6)	3.042(8)	-O(1)	3.181(10)
-O(8) ^(iv)	3.048(9)	$-O(2)^{(v)}$	3.217(8)
$-O(4)^{(v)}$	3.117(8)	$-B(4)^{(v)}$	3.512(15)
-O(5)	3.153(8)	Mean Cs-O value	3.120(8)

Symmetry code: (i) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (iii) $x + \frac{1}{2}$, $y, -z + \frac{3}{2}$; (iv) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (v) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, z.

α -CsB ₅ O ₈				
	BC	D₄ Tetrahedron		
B(1)-O(1)	1.464(10)	-O(1)-B(1)-O(2)	108.0(5)	
-O(2)	1.495(9)	O(1)-B(1)-O(3)	110.6(6)	
-O(3)	1.488(9)	O(1) - B(1) - O(4)	110.7(6)	
-O(4)	1.463(9)	O(2)-B(1)-O(3)	107.6(6)	
Mean	1.476(9)	O(2) - B(1) - O(4)	111.3(6)	
		O(3) - B(1) - O(4)	108.7(6)	
		Mean	109.5(6)	
	I	3O ₃ triangles		
B(2)-O(1)	1.344(9)	O(1)-B(2)-O(5)	122.4(7)	
-O(5)	1.380(9)	O(1) - B(2) - O(6)	121.0(7)	
-O(6)	1.393(9)	O(5)-B(2)-O(6)	116.5(6)	
Mean	1.372(9)	Mean	120.0(7)	
B(3)-O(4)	1.334(9)	$O(4)-B(3)-O(5)^{(i)}$	121.3(7)	
$-O(5)^{(i)}$	1.374(9)	O(4) - B(3) - O(8)	121.6(6)	
-O(8)	1.383(9)	$O(5)^{(i)} - B(3) - O(8)$	117.2(6)	
Mean	1.363(9)	Mean	120.0(6)	

TABLE 5—Continued

]	BO ₃ triangles	
B(4)-O(2)	1.341(10)	O(2) - B(4) - O(7)	126.9(7)
-O(7)	1.370(9)	O(2)-B(4)-O(8)	120.3(6)
-O(8)	1.409(9)	O(7) - B(4) - O(8)	112.7(7)
Mean	1.373(9)	Mean	120.0(7)
B(5)-O(3)	1.338(9)	O(3)-B(5)-O(6)	120.7(6)
-O(6)	1.389(9)	$O(3)-B(5)-O(7)^{(ii)}$	125.8(7)
$-O(7)^{(ii)}$	1.363(9)	O(6)-B(5)-O(7) ⁽ⁱⁱ⁾	113.5(6)
Mean	1.363(9)	Mean	120.0(6)
	Environment	of Cesium Atoms (< 4 A	Å)
Cs-O(3)(iii)	3.040(5)	$Cs-O(5)^{(i)}$	3.211(5)
$-O(2)^{(iv)}$	3.113(4)	$-O(7)^{(vi)}$	3.272(6)
$-O(6)^{(v)}$	3.140(5)	-O(2) ^(vii)	3.429(5)
-O(8) ^(vi)	3.151(5)	$-B(1)^{(vii)}$	3.603(8)
-O(4)	3.183(5)	Mean Cs-O value	3.192(5)
-O(1) ^(vii)	3.193(5)		

Symmetry code: (i) x - 1, y, z; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (iii) -x, -y + 1, -z + 1; (iv) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (v) -x + 1, -y + 1, -z + 1; (vi) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (vii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

β -RbB ₅ O ₈						
BO_4 tetrahedron						
$B(1)-O(1)^{(i)}$	1.474(3)	$O(1)^{(i)}-B(1)-O(3)^{(ii)}$	108.8(2)			
-O(3) ⁽ⁱⁱ⁾	1.481(3)	$O(1)^{(i)} - B(1) - O(4)^{(ii)}$	110.4(2)			
-O(4) ⁽ⁱⁱ⁾	1.467(3)	$O(1)^{(i)} - B(1) - O(5)$	107.9(2)			
-O(5)	1.464(3)	$O(3)^{(ii)} - B(1) - O(4)^{(ii)}$	108.2(2)			
Mean	1.476(3)	$O(3)^{(ii)} - B(1) - O(5)$	111.2(2)			
		$O(4)^{(ii)} - B(1) - O(5)$	110.4(2)			
		Mean	109.5(2)			
]	BO ₃ triangles				
B(2)-O(4)	1.347(3)	$O(4)-B(2)-O(7)^{(iii)}$	122.6(2)			
$-O(7)^{(iii)}$	1.389(3)	O(4)-B(2)-O(8)	118.3(2)			
-O(8)	1.362(3)	$O(7)^{(iii)}-B(2)-O(8)$	119.0(2)			
Mean	1.366(3)	Mean	120.0(2)			
B(3)-O(1)	1.340(3)	O(1)-B(3)-O(6) ^(iv)	123.2(2)			
-O(6) ^(iv)	1.386(3)	$O(1)-B(3)-O(7)^{(iv)}$	121.1(2)			
$-O(7)^{(iv)}$	1.391(3)	$O(6)^{(iv)} - B(3) - O(7)^{(iv)}$	115.7(2)			
Mean	1.372(3)	Mean	120.0(2)			
$B(4) - O(2)^{(v)}$	1.388(4)	$O(2)^{(v)} - B(4) - O(3)$	123.3(3)			
-O(3)	1.339(4)	$O(2)^{(v)} - B(4) - O(8)^{(v)}$	114.9(3)			
$-O(8)^{(v)}$	1.389(4)	$O(3)-B(4)-O(8)^{(v)}$	121.8(3)			
Mean	1.372(4)	Mean	120.0(3)			
$B(5)-O(2)^{(vi)}$	1.384(3)	$O(2)^{(vi)}-B(5)-O(5)$	121.2(2)			
-O(5)	1.346(4)	$O(2)^{(vi)} - B(5) - O(6)^{(iv)}$	117.1(2)			
-O(6) ^(iv)	1.387(3)	$O(5)-B(5)-O(6)^{(iv)}$	121.7(2)			
Mean	1.372(3)	Mean	120.0(2)			
	Environment of rubidium atoms (< 3.5 Å)					
Rb-O(7)	2.959(2)	$Rb-O(3)^{(viii)}$	3.137(2)			
-O(4)	2.961(2)	$-O(5)^{(vii)}$	3.175(2)			
-O(5)	3.023(2)	-O(3)	3.300(2)			
$-O(1)^{(vii)}$	3.027(2)	-O(6)	3.335(2)			
-O(8)	3.037(2)	-B(2)	3.341(3)			
-O(1)	3.040(2)	Mean Rb-O value	3.099(2)			

Symmetry code: (i) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (ii) $x - \frac{1}{2}$, y, $-z + \frac{1}{2}$; (iii) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) -x, -y, -z; (v) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (vi) $-x - \frac{1}{2}$, $y - \frac{1}{2}$, z; (vii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z; (viii) $x + \frac{1}{2}$, y, $-z + \frac{1}{2}$.

FIG. 1. Representation of the pentaborate unit $[B_5O_8]^-$ constituted by two B_3O_3 cycles linked by a boron atom; the two planes *A* and *B* are formed by two BO₃ triangles.

and cooling to 550°C and 460°C, respectively, at a rate of 10°C/min. Single crystals of β -RbB₅O₈ were obtained after dehydration of Rb[B₅O₆(OH)₄]·2H₂O, melting approximately 30°C above the melting point (7) (T = 820°C) and cooling to 550°C at a rate of 10°C/min. In each case, the cooling process was followed by an annealing for 96 h at 550°C (α -CsB₅O₈ and β -RbB₅O₈) or 460°C (γ -CsB₅O₈) and a quenching to room temperature.

Single-Crystal Structure Determination

Colorless single crystals were chosen from the various preparations; their forms are always irregular. The intensity data were collected on a Brucker AXS SMART three-circle diffractometer using graphite-monochromatized $MoK\alpha$ radiation ($\lambda = 0.71073$ Å), and equipped with a CCD twodimensional detector. Crystal data and conditions of intensity collections are given in Table 2. The positions of all the atoms were obtained using direct methods in the space groups *Pbca* (α -CsB₅O₈, β -RbB₅O₈) and *P*2₁/*n* (γ -CsB₅O₈). The structures were refined by full-matrix least-squares techniques using the SHELXTL crystallographic software package (17). Absorption correction was made using the program SADABS (18). In the final cycles, all the positional parameters as well as the anisotropic displacement parameters of all the atoms were refined. The final refinement converged at $R_1 = 0.0712$ and $wR_2 = 0.1867$ using 1085 reflections $[I > 2\sigma(I)]$ for γ -CsB₅O₈; $R_1 = 0.0489$ and $wR_2 = 0.1276$ using 1392 reflections $[I > 2\sigma(I)]$ for α -CsB₅O₈; $R_1 = 0.0290$ and w $R_2 = 0.0659$ using 1271 reflections $[I > 2\sigma(I)]$ for β -RbB₅O₈. The atomic coordinates and the motion parameters are reported in Tables 3 and 4; significant bond lengths and angles are listed in Table 5.

DESCRIPTION OF THE STRUCTURES AND DISCUSSION

Borate Anions

From Table 5, it can be observed that the borate anions existing in these three pentaborates are constituted by BO₃ triangles (Δ) and BO₄ tetrahedra (T) sharing all their vertices. The B-O distances in BO₃ triangles range from 1.30 Å for B(4)–O(2) in γ -CsB₅O₈ to 1.45 Å for B(3)–O(8) in the same borate; in the BO₄ tetrahedra, the B-O distances are between 1.463 Å and 1.495 Å in α -CsB₅O₈ (Table 5). The mean values for B–O bonds are around 1.37(2) Å in the BO₃ triangles and around 1.47(2) Å in the BO₄ tetrahedra; these values are identical to those found in other borates such as α - and β -KB₅O₈ (4, 3), TlB₅O₈ (10), α - and β -RbB₃O₅ (19, 20), CsB_3O_5 (21), and $Rb_2B_4O_7$ (22). With regard to the O-B-O angles, the mean values for BO₃ triangles and BO₄ tetrahedra are almost ideal (Table 5). All the studied compounds are composed of $[B_5O_8]^-$ units, whose isolated scheme is represented in Fig. 1; it is formed by two B_3O_3 cycles linked by a boron atom, and it contains two groups of two BO_3 triangles (A and B planes) on each side of a BO_4 tetrahedron.

FIG. 2. Polyhedral representation of the structure of α -CsB₅O₈ on the (100) plane showing the infinite corrugated layers along the *c* direction; the black spheres represent cesium atoms.

FIG. 3. Polyhedral representation of the structure of α -CsB₅O₈ on the (001) plane showing the connection of the pentaborate groups insured by the two O(5) in the *a* direction and the two O(7) in the *b* direction; for sake of clarity only half the cell content is drawn. The black spheres represent cesium atoms.

 α -CsB₅O₈. Figures 2 and 3 give the representation of the α -CsB₅O₈ form in the (b, c) and (a, b) plane, respectively. It consists of infinite corrugated layers (Fig. 2) of $[B_5O_8]^$ pentaborate groups linked to each other by the four external oxygen atoms of the four boron triangles along two different directions (Fig. 3). The connection of the pentaborate groups is insured by the two O(5) oxygen atoms in the a direction and by the two O(7) atoms in the b direction (Fig. 3) leading to a two-dimensional network in the (a, b)plane and to large tunnels perpendicular to the corrugated direction, along the c direction, in which Cs^+ ions are located (Fig. 3). The shorthand notation of this new borate anion is $5:\infty^{2}(4\Delta + T)$ (23, 24). The infinite corrugated layers are similar to those found in SrKB₅O₉ (25) and $CaNaB_5O_9$ (26). However, in these last compounds the layers are constituted of a two-dimensional network of other pentaborate groups $[B_5O_{11}]^{7-}$. The latter is built up from two tetrahedrally coordinated boron atoms and three triangularly coordinated boron atoms leading, in contrast to α -CsB₅O₈, to five terminal oxygen atoms. Four of them are shared with other $[B_5O_{11}]^{7-}$ groups to form a twodimensional network and one of them remains as the terminal oxygen atom. The shorthand notation for this borate anion is $5:\infty^2(3\Delta + 2T)$ (23, 24).

 γ -CsB₅O₈. Two projections of the structure of γ -CsB₅O₈ along the *b* and *a* axes are shown in Figs. 4 and 5, respectively. The γ -CsB₅O₈ form, isostructural to α -KB₅O₈ (4), differs from the α -CsB₅O₈ form in the mutual arrangement of the pentaborate groups, which in this compound leads to a three-dimensional network. The pentaborate groups [B₅O₈]⁻ are connected through two groups of external oxygen atoms, O(7) and O(8), located on opposite ends of the pentaborate groups. In the neighborhood of O(7) and O(8) oxygen atoms, we note the presence of a two-fold screw axis along the *b* direction. The shorthand notation for the borate anion existing in γ -CsB₅O₈ is 5: $\infty^3(4\Delta + T)$ (23, 24).

 β -*RbB*₅O₈. Figure 6 shows a projection of the structure of β -*RbB*₅O₈ along the *a* axis. The structure of β -*RbB*₅O₈ is very close to that of TlB₅O₈ (10) and β -*KB*₅O₈ (3). As described for these two last compounds, the pentaborate groups [B₅O₈]⁻ are attached to each other by common oxygen atoms, and form a three-dimensional network. Twofold screw axes run near the center of the pentaborate groups; these groups run back in nearly the same direction, namely *b*, around the screw axes. These results are in good agreement with those recently published from an X-ray

FIG. 4. Polyhedral representation of the structure of γ -CsB₅O₈ along the *b* axis. The networks connect through O(7) to pentaborate group above and below; for sake of clarity only half the cell content is drawn; the black spheres represent cesium atoms.

powder diffraction study (9). The shorthand notation for the borate anion existing in β -RbB₅O₈ is $5:\infty^3(4\Delta + T)$ (23, 24).

Whatever the M^+ cations (M = Cs, Rb), one can see that the structure of MB_5O_8 compounds can be described on the basis of a two- $(\alpha$ -CsB₅O₈) and three-dimensional (γ - CsB_5O_8 , β -RbB₅O₈) network of pentaborate groups $[B_5O_8]^-$, with the shorthand notation $5:\infty^2(4\Delta + T)$ for α -CsB₅O₈ and 5: $\infty^{3}(4\Delta + T)$ for γ -CsB₅O₈ and β -RbB₅O₈. It is interesting to note that the two forms of studied cesium pentaborates belong to two different space groups (Table 2) while the known forms of potassium and rubidium pentaborates crystallize in the same space group (Table 1). They are obtained by polymerization of the isolated pentaborate groups $[B_5O_6(OH)_4]^-$ (Fig. 1), where the terminal oxygens are OH groups found in hydrated cesium and rubidium pentaborates. Upon heating (i.e., formation and loss of water molecules), the four OH groups of the hydrated pentaborates are replaced by four terminal oxygen atoms that insure the connections between adjacent pentaborate groups (Fig. 1).

As we described above, the structures of α -CsB₅O₈, γ - CsB_5O_8 , and β -RbB₅O₈ differ in the mutual arrangement of the pentaborate groups $[B_5O_8]^-$. These differences are associated with the angles between the two planes A and B (Fig. 1) formed by the two BO₃ triangles on each side of the BO₄ tetrahedron. To evaluate these angles, we defined a middle plane for A and B. In the case of hydrated cesium and rubidium pentaborates, we notice that this angle is of 77° and of 81° for Cs[B₅O₆(OH)₄]·2H₂O (16) and $Rb[B_5O_6(OH)_4] \cdot 2H_2O$ (15), respectively; due to the small irregularity of the BO₄ tetrahedron, the angle between the two planes differs from the ideal value of 90°. In the case of α -CsB₅O₈, which is based on a two-dimensional network of pentaborate groups, the angle between the two planes is 80° . The latter value is close to the one found in the hydrated cesium pentaborate. In this case, due to the presence of a new network of pentaborate groups, we could not make any comparison with existing isostructural borates. In the three-dimensional network occurring in the γ -CsB₅O₈ form, the angle between the two planes is 81°. This value is not too far from that found in α -KB₅O₈ (72°) (4), which is

FIG. 5. Polyhedral representation of the structure of γ -CsB₅O₈ along the *a* axis. The networks connect through O(8) to pentaborate group above and below; for sake of clarity only half the cell content is drawn; the black spheres represent cesium atoms.

isostructural with γ -CsB₅O₈. The close values of angles in the two- and in three-dimensional networks indicate an absence of strain. For β -RbB₅O₈, where a three-dimensional network also exists, the angle is 56°. This value is in good agreement with that found in β -KB₅O₈ (56°) (3) and TlB₅O₈ (56°) (10). The smaller angle compared to the ones found in α -CsB₅O₈ and γ -CsB₅O₈ comes from a stronger strain in this three-dimensional network.

Four other pentaborate groups, different from those existing in MB_5O_8 (M = K (α and β), Cs (α and γ), Rb (β) Tl), are reported. As discussed above, a two-dimensional network of $[B_5O_{11}]^{7-}$ anions is present in the structure of SrKB₅O₉ (25) and CaNaB₅O₉ (26); its shorthand notation is $5:\infty^2(3\Delta + 2T)$ (23, 24). Discrete $[B_5O_{10}]^{5-}$ anions form the structure of CaNa₃B₅O₁₀ (27), with the shorthand notation $5:(4\Delta + T)$ (23, 24). Several $MLnB_5O_{10}$ compounds (where *M* is a bivalent ion), for example Mg LnB_5O_{10} (28), have infinite two-dimensional boron–oxygen layers. Each of these infinite slabs consists of groups of three BO₄ tetrahedra and two BO₃ triangles that condense by sharing vertices, giving a boron–oxygen anionic complex

 $[B_5O_{10}]^{5-}$ with the shorthand notation $5:\infty^2(2\Delta + 3T)(23, 24)$. Finally, a fourth type of $[B_5O_{10}]^{5-}$ anion was found in $Ba_2LiB_5O_{10}(29)$ and $CuTbB_5O_{10}(30)$; it exhibits a unique one-dimensional polyborate anion built from two crystal-lographically independent BO_3 triangles and one distinct BO_4 tetrahedron that share vertices. The shorthand notation for this borate anion is $3:\infty^1(2\Delta + T)(23, 24)$.

M^+ Environments

For γ -CsB₅O₈, α -CsB₅O₈, and β -RbB₅O₈, the shortest M-B (M = Cs, Rb) distances are 3.512 Å, 3.603 Å, and 3.341 Å, respectively (Table 5). Therefore, only the oxygen atoms with shorter M-O bonds (i.e., M-O < M-B) will be considered for the oxygenated environment of Cs⁺ and Rb⁺ ions. The cations are eight-coordinated in γ -CsB₅O₈, nine-coordinated in α -CsB₅O₈, and ten-coordinated in β -RbB₅O₈. The M-O distances range from 3.036 Å to 3.153 Å in γ -CsB₅O₈, from 3.040 Å to 3.429 Å in α -CsB₅O₈, and from 2.959 Å to 3.335 Å in β -RbB₅O₈ with average values of 3.120 Å, 3.192 Å, and 3.099 Å, respectively. The

FIG. 6. Polyhedral representation of the structure of β -RbB₅O₈ showing the manner in which the pentaborate groups are interlinked in the two three-dimensional networks; the black spheres represent rubidium atoms.

mean values are consistent with the sum of the ionic radii $(r(Cs^+_{(8)}) = 1.74 \text{ Å}, r(Cs^+_{(9)}) = 1.78 \text{ Å}, r(Rb^+_{(10)}) = 1.66 \text{ Å}, r(O^{2-}_{(4)}) = 1.38 \text{ Å})$ (31) and in good agreement with those found in CsB₃O₅ (21), α - and β -RbB₃O₅ (19, 20), and Rb₂B₄O₇ (22).

CONCLUSION

In this paper, the structures of α -CsB₅O₈, γ -CsB₅O₈, and β -RbB₅O₈ were solved from single-crystal X-ray diffraction data. All these compounds are composed of [B₅O₈]⁻ pentaborate units, formed by two groups of two BO₃ triangles on each side of a BO₄ tetrahedron. Their structures differ in the mutual arrangement of the pentaborate groups. In α -CsB₅O₈, the structure consists of infinite corrugated layers of [B₅O₈]⁻ units linked to each other by the four external oxygen atoms of the four BO₃ triangles; its shorthand notation is $5:\infty^2(4\Delta + T)$. In contrast, the structures of γ -CsB₅O₈ and β -RbB₅O₈ can be described on the basis of

a three-dimensional network of $[B_5O_8]^-$ units linked together; their shorthand notations are $5:\infty^3(4\Delta + T)$. The dehydration process of the $M[B_5O_6(OH)_4]\cdot 2H_2O$ (M = Cs, Rb, Tl) leading to several forms of MB_5O_8 (M = Cs, Rb, Tl) will be presented in a forthcoming paper.

REFERENCES

- 1. J. Krogh-Moe, Ark. Kemi 14, 439 (1959).
- 2. J. Krogh-Moe, Ark. Kemi 14, 567 (1959).
- 3. J. Krogh-Moe, Acta Crystallogr. 18, 1088 (1965).
- 4. J. Krogh-Moe, Acta Crystallogr. B 28, 168 (1972).
- 5. J. Krogh-Moe, Acta Crystallogr. 14, 68 (1961).
- 6. J. Krogh-Moe, Acta Crystallogr. B 30, 1827 (1974).
- 7. J. Kocher, Rev. Chim. Miner. 3, 209 (1966).
- 8. J. Kocher, Bull. Soc. Chim. Fr. 3, 919 (1968).
- M. G. Krzhizhanovskaya, R. S. Bubnova, S. K. Filatov, A. Belger, and P. Paufler, Z. Kristallogr. 215, 740 (2000).
- M. Touboul and G. Nowogrocki, J. Solid State Chem. 136, 216 (1998).
- R. S. Bubnova, I. G. Polyakova, Yu. E. Anderson, and S. K. Filatov, Glass Phys. Chem. 25, 183 (1999).
- 12. J. Krogh-Moe, Ark. Kemi 12, 247 (1958).
- 13. J. Krogh-Moe, Ark. Kemi 14, 451 (1959).
- 14. N. Penin, L. Seguin, B. Gérand, M. Touboul, and G. Nowogrocki, J. Solid State Chem. (in press).
- 15. H. Behm, Acta Crystallogr. C 40, 217 (1984).
- 16. H. Behm, Acta Crystallogr. C 40, 1114 (1984).
- G. M. Sheldrick, SHELXTL:Program for Crystal Structure Solution and Refinement, Bruker AXS Inc., 6300 Enterprise Ln., Madison, WI 53719-1173, USA, 1997.
- G. M. Sheldrick, SADABS:Program for Siemens Area Detector Absorption Corrections, University of Göttingen, Germany, 1997.
- M. G. Krzhizhanovskaya, Y. K. Kabalov, R. S. Bubnova, E. V. Sokolova, and S. K. Filatov, *Crystallogr. Rep.* 45, 572 (2000).
- M. G. Krzhizhanovskaya, R. S. Bubnova, V. S. Fundamenskii, I. I. Bannova, I. G. Polyakova, and S. K. Filatov, *Crystallogr. Rep.* 4, 21 (1998).
- 21. J. Krogh-Moe, Acta Crystallogr. B 30, 1178 (1974).
- M. G. Krzhizhanovskaya, R. S. Bubnova, I. I. Bannova, and S. K. Filatov, *Crystallogr. Rep.* 42, 226 (1997).
- 23. C. L. Christ and J. R. Clark, Phys. Chem. Miner. 2, 59 (1977).
- 24. G. Heller, Topics Curr. Chem. 131, 39 (1986).
- 25. J. M. Tu and D. A. Keszler, Acta Crystallogr. C 25, 341 (1995).
- J. Fayos, R. A. Howie, and F. P. Glasser, *Acta Crystallogr. C* 41, 1394 (1985).
- J. Fayos, R. A. Howie, and F. P. Glasser, *Acta Crystallogr. C* 41, 1396 (1985).
- B. Saubat, M. Vlasse, and C. Fouassier, J. Solid State Chem. 34, 271 (1980).
- 29. R. W. Smith and D. A. Keszler, Mater. Res. Bull. 24, 725 (1989).
- 30. J. Schaefer and K. Bluhm, Z. Anorg. Chem. 621, 567 (1995).
- 31. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).